Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1309917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464965

RESUMO

Background: The mechanism of Nicotinamide Adenine Dinucleotide (NAD+) metabolism-related genes (NMRGs) in diabetic peripheral neuropathy (DPN) is unclear. This study aimed to find new NMRGs biomarkers in DPN. Methods: DPN related datasets GSE95849 and GSE185011 were acquired from the Gene Expression Omnibus (GEO) database. 51 NMRGs were collected from a previous article. To explore NMRGs expression in DPN and control samples, differential expression analysis was completed in GSE95849 to obtain differentially expressed genes (DEGs), and the intersection of DEGs and NMRGs was regarded as DE-NMRGs. Next, a protein-protein interaction (PPI) network based on DE-NMRGs was constructed and biomarkers were screened by eight algorithms. Additionally, Gene Set Enrichment Analysis (GSEA) enrichment analysis was completed, biomarker-based column line graphs were constructed, lncRNA-miRNA-mRNA and competing endogenouse (ce) RNA networks were constructed, and drug prediction was completed. Finally, biomarkers expression validation was completed in GSE95849 and GSE185011. Results: 5217 DEGs were obtained from GSE95849 and 21 overlapping genes of DEGs and NMRGs were DE-NMRGs. Functional enrichment analysis revealed that DE-NMRGs were associated with glycosyl compound metabolic process. The PPI network contained 93 protein-interaction pairs and 21 nodes, with strong interactions between NMNAT1 and NAMPT, NADK and NMNAT3, ENPP3 and NUDT12 as biomarkers based on 8 algorithms. Expression validation suggested that ENPP3 and NUDT12 were upregulated in DPN samples (P < 0.05). Moreover, an alignment diagram with good diagnostic efficacy based on ENPP3 and NUDT12 were identified was constructed. GSEA suggested that ENPP3 was enriched in Toll like receptor (TLR) pathway, NUDT12 was enriched in maturity onset diabetes of the young and insulin pathway. Furthermore, 18 potential miRNAs and 36 Transcription factors (TFs) were predicted and the miRNA-mRNA-TF networks were constructed, suggesting that ENPP3 might regulate hsa-miR-34a-5p by affecting MYNN. The ceRNA network suggested that XLOC_013024 might regulate hsa-let-7b-5p by affecting NUDT12. 15 drugs were predicted, with 8 drugs affecting NUDT12 such as resveratrol, and 13 drugs affecting ENPP3 such as troglitazone. Conclusion: ENPP3 and NUDT12 might play key roles in DPN, which provides reference for further research on DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , MicroRNAs , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , NAD , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/genética , Biomarcadores , RNA Mensageiro
2.
Cancer Lett ; 588: 216806, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467179

RESUMO

The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD+ salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD+ salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD+ salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD+ metabolism in the treatment of PAAD.


Assuntos
Adenocarcinoma , Nicotinamida-Nucleotídeo Adenililtransferase , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ácido Láctico , NAD/metabolismo , Glucose , Camundongos Nus , Lisina , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
3.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282024

RESUMO

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
4.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184646

RESUMO

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do Álcool
5.
Lab Invest ; 104(3): 100329, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237740

RESUMO

Metabolic syndrome (MetS) is a worldwide challenge that is closely associated with obesity, nonalcoholic liver disease, insulin resistance, and type 2 diabetes. Boosting nicotinamide adenine dinucleotide (NAD+) presents great potential in preventing MetS. However, the function of nuclear NAD+ in the development of MetS remains poorly understood. In this study, hepatocyte-specific Nmnat1 knockout mice were used to determine a possible link between nuclear NAD+ and high-fat diet (HFD)-induced MetS. We found that Nmnat1 knockout significantly reduced hepatic nuclear NAD+ levels but did not exacerbate HFD-induced obesity and hepatic triglycerides accumulation. Interestingly, loss of Nmnat1 caused insulin resistance. Further analysis revealed that Nmnat1 deletion promoted gluconeogenesis but inhibited glycogen synthesis in the liver. Moreover, Nmnat1 deficiency induced mitochondrial dysfunction by decreasing mitochondrial DNA (mtDNA)-encoded complexes Ⅰ and Ⅳ, suppressing mtDNA replication and mtRNA transcription and reducing mtDNA copy number. In addition, Nmnat1 depletion affected the expression of hepatokines in the liver, particularly downregulating the expression of follistatin. These findings highlight the importance of nuclear NAD+ in maintaining insulin sensitivity and provide insights into the mechanisms underlying HFD-induced insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , NAD/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Camundongos Endogâmicos C57BL , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
6.
Nat Commun ; 14(1): 5818, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783679

RESUMO

Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.


Assuntos
Infecções Bacterianas , Nicotinamida-Nucleotídeo Adenililtransferase , Infecções Respiratórias , Humanos , NAD/metabolismo , Proteômica , Citocinas/metabolismo , Linhagem Celular , Trifosfato de Adenosina , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
7.
J Nutr Sci Vitaminol (Tokyo) ; 69(3): 184-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394423

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme that mediates many redox reactions in energy metabolism. NAD+ is also a substrate for ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerase and sirtuin, respectively. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) is a NAD+ biosynthesizing enzyme found in the nucleus. Recent research has shown that the maintaining NAD+ levels is critical for sustaining muscle functions both in physiological and pathological conditions. However, the role of Nmnat1 in skeletal muscle remains unexplored. In this study, we generated skeletal muscle-specific Nmnat1 knockout (M-Nmnat1 KO) mice and investigated its role in skeletal muscle. We found that NAD+ levels were significantly lower in the skeletal muscle of M-Nmnat1 KO mice than in control mice. M-Nmnat1 KO mice, in contrast, had similar body weight and normal muscle histology. Furthermore, the distribution of muscle fiber size and gene expressions of muscle fiber type gene expression were comparable in M-Nmnat1 KO and control mice. Finally, we investigated the role of Nmnat1 in muscle regeneration using cardiotoxin-induced muscle injury model, but muscle regeneration appeared almost normal in M-Nmnat1 KO mice. These findings imply that Nmnat1 has a redundancy in the pathophysiology of skeletal muscle.


Assuntos
NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Camundongos , Animais , NAD/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Camundongos Knockout , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
8.
Front Immunol ; 14: 1158455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457744

RESUMO

Introduction: Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods: RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results: Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion: Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.


Assuntos
COVID-19 , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , Camundongos , Animais , NAD/metabolismo , SARS-CoV-2/metabolismo , Camundongos Transgênicos , Inflamação , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
9.
Biochem Biophys Res Commun ; 674: 162-169, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37421924

RESUMO

Nicotinamide adenine dinucleotide (NAD+) functions as an essential cofactor regulating a variety of biological processes. The purpose of the present study was to determine the role of nuclear NAD+ biosynthesis, mediated by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), in thermogenesis and whole-body energy metabolism. We first evaluated the relationship between NMNAT1 expression and thermogenic activity in brown adipose tissue (BAT), a key organ for non-shivering thermogenesis. We found that reduced BAT NMNAT1expression was associated with inactivation of thermogenic gene program induced by obesity and thermoneutrality. Next, we generated and characterized adiponectin-Cre-driven adipocyte-specific Nmnat1 knockout (ANMT1KO) mice. Loss of NMNAT1 markedly reduced nuclear NAD+ concentration by approximately 70% in BAT. Nonetheless, adipocyte-specific Nmnat1 deletion had no impact on thermogenic (rectal temperature, BAT temperature and whole-body oxygen consumption) responses to ß-adrenergic ligand norepinephrine administration and acute cold exposure, adrenergic-mediated lipolytic activity, and metabolic responses to obesogenic high-fat diet feeding. In addition, loss of NMNAT1 did not affect nuclear lysine acetylation or thermogenic gene program in BAT. These results demonstrate that adipocyte NMNAT1 expression is required for maintaining nuclear NAD+ concentration, but not for regulating BAT thermogenesis or whole-body energy homeostasis.


Assuntos
Adipócitos , Metabolismo Energético , Nicotinamida-Nucleotídeo Adenililtransferase , Termogênese , Animais , Camundongos , Camundongos Knockout , Dieta Hiperlipídica , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo
10.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240262

RESUMO

To report the spectrum of Leber congenital amaurosis (LCA) associated genes in a large German cohort and to delineate their associated phenotype. Local databases were screened for patients with a clinical diagnosis of LCA and for patients with disease-causing variants in known LCA-associated genes independent of their clinical diagnosis. Patients with a mere clinical diagnosis were invited for genetic testing. Genomic DNA was either analyzed in a diagnostic-genetic or research setup using various capture panels for syndromic and non-syndromic IRD (inherited retinal dystrophy) genes. Clinical data was obtained mainly retrospectively. Patients with genetic and phenotypic information were eventually included. Descriptive statistical data analysis was performed. A total of 105 patients (53 female, 52 male, age 3-76 years at the time of data collection) with disease-causing variants in 16 LCA-associated genes were included. The genetic spectrum displayed variants in the following genes: CEP290 (21%), CRB1 (21%), RPE65 (14%), RDH12 (13%), AIPL1 (6%), TULP1 (6%), and IQCB1 (5%), and few cases harbored pathogenic variants in LRAT, CABP4, NMNAT1, RPGRIP1, SPATA7, CRX, IFT140, LCA5, and RD3 (altogether accounting for 14%). The most common clinical diagnosis was LCA (53%, 56/105) followed by retinitis pigmentosa (RP, 40%, 42/105), but also other IRDs were seen (cone-rod dystrophy, 5%; congenital stationary night blindness, 2%). Among LCA patients, 50% were caused by variants in CEP290 (29%) and RPE65 (21%), whereas variants in other genes were much less frequent (CRB1 11%, AIPL1 11%, IQCB1 9%, and RDH12 7%, and sporadically LRAT, NMNAT1, CRX, RD3, and RPGRIP1). In general, the patients showed a severe phenotype hallmarked by severely reduced visual acuity, concentric narrowing of the visual field, and extinguished electroretinograms. However, there were also exceptional cases with best corrected visual acuity as high as 0.8 (Snellen), well-preserved visual fields, and preserved photoreceptors in spectral domain optical coherence tomography. Phenotypic variability was seen between and within genetic subgroups. The study we are presenting pertains to a considerable LCA group, furnishing valuable comprehension of the genetic and phenotypic spectrum. This knowledge holds significance for impending gene therapeutic trials. In this German cohort, CEP290 and CRB1 are the most frequently mutated genes. However, LCA is genetically highly heterogeneous and exhibits clinical variability, showing overlap with other IRDs. For any therapeutic gene intervention, the disease-causing genotype is the primary criterion for treatment access, but the clinical diagnosis, state of the retina, number of to be treated target cells, and the time point of treatment will be crucial.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Masculino , Feminino , Humanos , Amaurose Congênita de Leber/genética , Estudos Retrospectivos , Mutação , Proteínas do Olho/genética , Genótipo , Análise Mutacional de DNA , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Oxirredutases do Álcool/genética
11.
J Neuroinflammation ; 20(1): 117, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208728

RESUMO

BACKGROUND: New data are accumulating on gut microbial dysbiosis in Parkinson's disease (PD), while the specific mechanism remains uncharacterized. This study aims to investigate the potential role and pathophysiological mechanism of dysbiosis of gut microbiota in 6-hydroxydopamine (6-OHDA)-induced PD rat models. METHODS: The shotgun metagenome sequencing data of fecal samples from PD patients and healthy individuals were obtained from the Sequence Read Archive (SRA) database. The diversity, abundance, and functional composition of gut microbiota were further analyzed in these data. After the exploration of the functional pathway-related genes, KEGG and GEO databases were used to obtain PD-related microarray datasets for differential expression analysis. Finally, in vivo experiments were performed to confirm the roles of fecal microbiota transplantation (FMT) and upregulated NMNAT2 in neurobehavioral symptoms and oxidative stress response in 6-OHDA-lesioned rats. RESULTS: Significant differences were found in the diversity, abundance, and functional composition of gut microbiota between PD patients and healthy individuals. Dysbiosis of gut microbiota could regulate NAD+ anabolic pathway to affect the occurrence and development of PD. As a NAD+ anabolic pathway-related gene, NMNAT2 was poorly expressed in the brain tissues of PD patients. More importantly, FMT or overexpression of NMNAT2 alleviated neurobehavioral deficits and reduced oxidative stress in 6-OHDA-lesioned rats. CONCLUSIONS: Taken together, we demonstrated that dysbiosis of gut microbiota suppressed NMNAT2 expression, thus exacerbating neurobehavioral deficits and oxidative stress response in 6-OHDA-lesioned rats, which could be rescued by FMT or NMNAT2 restoration.


Assuntos
Microbioma Gastrointestinal , Nicotinamida-Nucleotídeo Adenililtransferase , Doença de Parkinson , Animais , Ratos , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , NAD , Estresse Oxidativo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
12.
Mol Cell Neurosci ; 125: 103853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100265

RESUMO

Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , Membranas Mitocondriais/metabolismo , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Gânglios Espinais/metabolismo , Cálcio/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo , Neurônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
13.
Geroscience ; 45(4): 2457-2470, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36964401

RESUMO

Cognitive impairment is present in a broad spectrum of medical conditions and in aging. Here, we aimed to identify plasma proteins related to cognitive function in a sample of older adults with overweight/obesity and metabolic syndrome. A total of 129 subjects (mean age 64.7 years; 36% females) were grouped according to low (l-GCF, N=65) or high (h-GCF, N=64) global cognitive function and matched according to education, sex, age, and body mass index. Cognitive performance was assessed using neuropsychological tests. Plasma levels of 92 neurology-related proteins were assessed using a proximity extension assay. An elastic net regression analysis was used to identify proteins more associated with cognitive performance. Additionally, the protein expression levels were compared between the two groups by means of a t-test with false discovery rate correction. Pearson correlations were used to assess associations between the protein levels and scores from the neurocognitive tests. Six proteins (alpha-2-MRAP, HAGH, Siglec-9, MDGA1, IL12, and EDA2R) were identified as potential contributors to cognitive performance, remaining significantly increased in l-GCF compared to h-GCF participants after correction for multiple testing. Negative correlations (r= -0.23 to -0.18, i.e., lower protein levels, higher cognitive function) were found between global cognitive function and Siglec-9, NMNAT1, HAGH, LXN, gal-8, alpha-2-MRAP, IL12, PDGF-R-alpha, NAAA, EDA2R, CLEC1B, and LAT. Mini-mental state examination z scores showed the strongest correlations with protein levels, specifically negative correlations with CLEC1b, LXN, LAT, PLXNB3, NMNAT1, gal-8, HAGH, NAAA, CTSS, EZR, KYNU, MANF (r=-0.38 to -0.26) and a positive correlation with ADAM23 (r= 0.26). In summary, we identified several plasma proteins that were significantly associated with cognitive performance in older adults with obesity and metabolic syndrome, although further research is needed to replicate the results in larger samples and to include a predictive perspective.


Assuntos
Síndrome Metabólica , Nicotinamida-Nucleotídeo Adenililtransferase , Feminino , Humanos , Idoso , Masculino , Síndrome Metabólica/complicações , Sobrepeso/complicações , Obesidade/complicações , Cognição , Proteínas Sanguíneas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Interleucina-12
14.
Neuromuscul Disord ; 33(4): 295-301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871412

RESUMO

In the NAD biosynthetic network, the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme fuels NAD as a co-substrate for a group of enzymes. Mutations in the nuclear-specific isoform, NMNAT1, have been extensively reported as the cause of Leber congenital amaurosis-type 9 (LCA9). However, there are no reports of NMNAT1 mutations causing neurological disorders by disrupting the maintenance of physiological NAD homeostasis in other types of neurons. In this study, for the first time, the potential association between a NMNAT1 variant and hereditary spastic paraplegia (HSP) is described. Whole-exome sequencing was performed for two affected siblings diagnosed with HSP. Runs of homozygosity (ROH) were detected. The shared variants of the siblings located in the homozygosity blocks were selected. The candidate variant was amplified and Sanger sequenced in the proband and other family members. Homozygous variant c.769G>A:p.(Glu257Lys) in NMNAT1, the most common variant of NMNAT1 in LCA9 patients, located in the ROH of chromosome 1, was detected as a probable disease-causing variant. After detection of the variant in NMNAT1, as a LCA9-causative gene, ophthalmological and neurological re-evaluations were performed. No ophthalmological abnormality was detected and the clinical manifestations of these patients were completely consistent with pure HSP. No NMNAT1 variant had ever been previously reported in HSP patients. However, NMNAT1 variants have been reported in a syndromic form of LCA which is associated with ataxia. In conclusion, our patients expand the clinical spectrum of NMNAT1 variants and represent the first evidence of the probable correlation between NMNAT1 variants and HSP.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , NAD , Mutação , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Linhagem , Nicotinamida-Nucleotídeo Adenililtransferase/genética
15.
PLoS One ; 18(2): e0281840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809279

RESUMO

Mitochondrial sirtuins have diverse role specifically in aging, metabolism and cancer. In cancer, these sirtuins play dichotomous role as tumor suppressor and promoter. Previous studies have reported the involvement of sirtuins in different cancers. However, till now no study has been published with respect to mitochondrial sirtuins and glioma risks. Present study was purposed to figure out the expression level of mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) and related genes (GDH, OGG1-2α, SOD1, SOD2, HIF1α and PARP1) in 153 glioma tissue samples and 200 brain tissue samples from epilepsy patients (taken as controls). To understand the role of selected situins in gliomagenesis, DNA damage was measured using the comet assay and oncometabolic role (oxidative stress level, ATP level and NAD level) was measured using the ELISA and quantitative PCR. Results analysis showed significant down-regulation of SIRT4 (p = 0.0337), SIRT5 (p<0.0001), GDH (p = 0.0305), OGG1-2α (p = 0.0001), SOD1 (p<0.0001) and SOD2 (p<0.0001) in glioma patients compared to controls. In case of SIRT3 (p = 0.0322), HIF1α (p = 0.0385) and PARP1 (p = 0.0203), significant up-regulation was observed. ROC curve analysis and cox regression analysis showed the good diagnostic and prognostic value of mitochondrial sirtuins in glioma patients. Oncometabolic rate assessment analysis showed significant increased ATP level (p<0.0001), NAD+ level [(NMNAT1 (p<0.0001), NMNAT3 (p<0.0001) and NAMPT (p<0.04)] and glutathione level (p<0.0001) in glioma patients compared to controls. Significant increased level of damage ((p<0.04) and decrease level of antioxidant enzymes include superoxide dismutase (SOD, p<0.0001), catalase (CAT, p<0.0001) and glutathione peroxidase (GPx, p<0.0001) was observed in patients compared to controls. Present study data suggest that variation in expression pattern of mitochondrial sirtuins and increased metabolic rate may have diagnostic and prognostic significance in glioma patients.


Assuntos
Glioma , Nicotinamida-Nucleotídeo Adenililtransferase , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/genética , Proteínas Mitocondriais/metabolismo , Superóxido Dismutase-1/metabolismo , Trifosfato de Adenosina , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
16.
Sci Total Environ ; 872: 162188, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781136

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.


Assuntos
Dietilexilftalato , Nicotinamida-Nucleotídeo Adenililtransferase , Gravidez , Feminino , Camundongos , Animais , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , NAD/metabolismo , Placenta/metabolismo , Plastificantes/metabolismo , Colo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
17.
J Nutr Biochem ; 115: 109296, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849030

RESUMO

Hepatic NAD+ homeostasis is essential to metabolic flexibility upon energy balance challenges. The molecular mechanism is unclear. This study aimed to determine how the enzymes involved in NAD+ salvage (Nampt, Nmnat1, Nrk1), clearance (Nnmt, Aox1, Cyp2e1), and consumption pathways (Sirt1, Sirt3, Sirt6, Parp1, Cd38) were regulated in the liver upon energy overload or shortage, as well as their relationships with glucose and lipid metabolism. Male C57BL/6N mice were fed ad libitum with the CHOW diet, high-fat diet (HFD), or subjected to 40% calorie restriction (CR) CHOW diet for 16 weeks respectively. HFD feeding increased hepatic lipids content and inflammatory markers, while lipids accumulation was not changed by CR. Both HFD feeding and CR elevated the hepatic NAD+ levels, as well as gene and protein levels of Nampt and Nmnat1. Furthermore, both HFD feeding and CR lowered acetylation of PGC-1α in parallel with the reduced hepatic lipogenesis and enhanced fatty acid oxidation, while CR enhanced hepatic AMPK activity and gluconeogenesis. Hepatic Nampt and Nnmt gene expression negatively correlated with fasting plasma glucose levels concomitant with positive correlations with Pck1 gene expression. Nrk1 and Cyp2e1 gene expression positively correlated with fat mass and plasma cholesterol levels, as well as Srebf1 gene expression. These data highlight that hepatic NAD+ metabolism will be induced for either the down-regulation of lipogenesis upon over nutrition or up-regulation of gluconeogenesis in response to CR, thus contributing to the hepatic metabolic flexibility upon energy balance challenges.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Sirtuínas , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , NAD/metabolismo , Restrição Calórica , Citocromo P-450 CYP2E1/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Sirtuínas/metabolismo
18.
Biomed Pharmacother ; 158: 114143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528916

RESUMO

Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase located in the cytoplasm and Golgi apparatus. NMNAT2 has an important role in neurodegenerative diseases, malignant tumors, and other diseases that seriously endanger human health. NMNAT2 exerts a neuroprotective function through its NAD synthase activity and chaperone function. Among them, the NMNAT2-NAD+-Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) axis is closely related to Wallerian degeneration. Physical injury or pathological stimulation will cause a decrease in NMNAT2, which activates SARM1, leading to axonal degeneration and the occurrence of amyotrophic lateral sclerosis (ALS), Alzheimer's disease, peripheral neuropathy, and other neurodegenerative diseases. In addition, NMNAT2 exerts a cancer-promoting role in solid tumors, including colorectal cancer, lung cancer, ovarian cancer, and glioma, and is closely related to tumor occurrence and development. This paper reviews the chromosomal and subcellular localization of NMNAT2 and its basic biological functions. We also summarize the NMNAT2-related signal transduction pathway and the role of NMNAT2 in diseases. We aimed to provide a new perspective to comprehensively understand the relationship between NMNAT2 and its associated diseases.


Assuntos
Doenças Neurodegenerativas , Nicotinamida-Nucleotídeo Adenililtransferase , Humanos , Axônios , NAD/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , Doenças Neurodegenerativas/patologia , Progressão da Doença , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
19.
Mamm Genome ; 34(1): 12-31, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414820

RESUMO

Alternative polyadenylation (APA) determines mRNA stability, localisation, translation and protein function. Several diseases, including obesity, have been linked to APA. Studies have shown that single nucleotide polymorphisms in polyadenylation signals (PAS-SNPs) can influence APA and affect phenotype and disease susceptibility. However, these studies focussed on associations between single PAS-SNP alleles with very large effects and phenotype. Therefore, we performed a genome-wide screening for PAS-SNPs in the polygenic mouse selection lines for fatness and leanness by whole-genome sequencing. The genetic variants identified in the two lines were overlapped with locations of PAS sites obtained from the PolyASite 2.0 database. Expression data for selected genes were extracted from the microarray expression experiment performed on multiple tissue samples. In total, 682 PAS-SNPs were identified within 583 genes involved in various biological processes, including transport, protein modifications and degradation, cell adhesion and immune response. Moreover, 63 of the 583 orthologous genes in human have been previously associated with human diseases, such as nervous system and physical disorders, and immune, endocrine, and metabolic diseases. In both lines, PAS-SNPs have also been identified in genes broadly involved in APA, such as Polr2c, Eif3e and Ints11. Five PAS-SNPs within 5 genes (Car, Col4a1, Itga7, Lat, Nmnat1) were prioritised as potential functional variants and could contribute to the phenotypic disparity between the two selection lines. The developed PAS-SNPs catalogue presents a key resource for planning functional studies to uncover the role of PAS-SNPs in APA, disease susceptibility and fat deposition.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Poliadenilação , Animais , Camundongos , Humanos , Suscetibilidade a Doenças , Magreza , Estabilidade de RNA , Fenótipo , Nicotinamida-Nucleotídeo Adenililtransferase/genética
20.
Mol Biol Cell ; 34(1): ar4, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322391

RESUMO

Nicotinamide mononucleotide adenylyltransferase (Nmnat) is a class of enzymes with three members (Nmnat1-3). Nmnat1 is in nucleus and associated with Leber congenital amaurosis, a form of early-onset retinal degeneration, while Nmnat2 is in cytoplasm and a well-characterized neuroprotective factor. The differences in their biological roles in the retina are unclear. We performed short hairpin RNA (shRNA)-based loss-of-function analysis of Nmnat2 during mouse retinal development in retinal explant cultures prepared from early (E14.5), middle (E17.5), or late (postnatal day [P]0.5) developmental stages. Nmnat2 has important roles in the survival of retinal cells in the early and middle stages of retinal development. Retinal cell death caused by Nmnat2 knockdown could be partially rescued by supplementation with NAD or nicotinamide mononucleotide (NMN). Survival of retinal cells in the late stage of retinal development was unaffected by Nmnat2, but differentiation of Müller glia was controlled by Nmnat2. RNA-Seq analyses showed perturbation of gene expression patterns by shRNAs specific for Nmnat1 or Nmnat2, but gene ontology analysis did not provide a rational explanation for the phenotype. This study showed that Nmnat2 has multiple developmental stage-dependent roles during mouse retinal development, which were clearly different from those of Nmnat1, suggesting specific roles for Nmnat1 and Nmnat2.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Camundongos , Animais , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Amaurose Congênita de Leber/genética , Retina/metabolismo , Fenótipo , Neurônios/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...